Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Mixing time and isoperimetry in random geometric graphs (2510.19951v1)

Published 22 Oct 2025 in math.PR and math.CO

Abstract: In this paper we study the mixing time of the simple random walk on the giant component of supercritical $d$-dimensional random geometric graphs generated by the unit intensity Poisson Point Process in a $d$-dimensional cube of volume $n$. With $r_g$ denoting the threshold for having a giant component, we show that for every $\epsilon > 0$ and any $r \ge (1+\epsilon)r_g$, the mixing time of the giant component is with high probability $\Theta(n{2/d}/r{2})$, thereby closing a gap in the literature. The main tool is an isoperimetric inequality which holds, w.h.p., for any large enough vertex set, a result which we believe is of independent interest. Our analysis also implies that the relaxation time is of the same order.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: