Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning from Supervision with Semantic and Episodic Memory: A Reflective Approach to Agent Adaptation (2510.19897v1)

Published 22 Oct 2025 in cs.CL, cs.AI, and cs.LG

Abstract: We investigate how agents built on pretrained LLMs can learn target classification functions from labeled examples without parameter updates. While conventional approaches like fine-tuning are often costly, inflexible, and opaque, we propose a memory-augmented framework that leverages both labeled data and LLM-generated critiques. Our framework uses episodic memory to store instance-level critiques-capturing specific past experiences-and semantic memory to distill these into reusable, task-level guidance. Across a diverse set of tasks, incorporating critiques yields up to a 24.8 percent accuracy improvement over retrieval-based (RAG-style) baselines that rely only on labels. Through extensive empirical evaluation, we uncover distinct behavioral differences between OpenAI and opensource models, particularly in how they handle fact-oriented versus preference-based data. To interpret how models respond to different representations of supervision encoded in memory, we introduce a novel metric, suggestibility. This helps explain observed behaviors and illuminates how model characteristics and memory strategies jointly shape learning dynamics. Our findings highlight the promise of memory-driven, reflective learning for building more adaptive and interpretable LLM agents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.