Papers
Topics
Authors
Recent
2000 character limit reached

Compressing Biology: Evaluating the Stable Diffusion VAE for Phenotypic Drug Discovery

Published 22 Oct 2025 in q-bio.QM and cs.LG | (2510.19887v1)

Abstract: High-throughput phenotypic screens generate vast microscopy image datasets that push the limits of generative models due to their large dimensionality. Despite the growing popularity of general-purpose models trained on natural images for microscopy data analysis, their suitability in this domain has not been quantitatively demonstrated. We present the first systematic evaluation of Stable Diffusion's variational autoencoder (SD-VAE) for reconstructing Cell Painting images, assessing performance across a large dataset with diverse molecular perturbations and cell types. We find that SD-VAE reconstructions preserve phenotypic signals with minimal loss, supporting its use in microscopy workflows. To benchmark reconstruction quality, we compare pixel-level, embedding-based, latent-space, and retrieval-based metrics for a biologically informed evaluation. We show that general-purpose feature extractors like InceptionV3 match or surpass publicly available bespoke models in retrieval tasks, simplifying future pipelines. Our findings offer practical guidelines for evaluating generative models on microscopy data and support the use of off-the-shelf models in phenotypic drug discovery.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.