Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Strongly Polynomial Parallel Work-Depth Tradeoffs for Directed SSSP (2510.19780v1)

Published 22 Oct 2025 in cs.DS

Abstract: In this paper, we show new strongly polynomial work-depth tradeoffs for computing single-source shortest paths (SSSP) in non-negatively weighted directed graphs in parallel. Most importantly, we prove that directed SSSP can be solved within $\tilde{O}(m+n{2-\epsilon})$ work and $\tilde{O}(n{1-\epsilon})$ depth for some positive $\epsilon>0$. In particular, for dense graphs with non-negative real weights, we provide the first nearly work-efficient strongly polynomial algorithm with sublinear depth. Our result immediately yields improved strongly polynomial parallel algorithms for min-cost flow and the assignment problem. It also leads to the first non-trivial strongly polynomial dynamic algorithm for minimum mean cycle. Moreover, we develop efficient parallel algorithms in the Word RAM model for several variants of SSSP in graphs with exponentially large edge weights.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.