Strongly Polynomial Parallel Work-Depth Tradeoffs for Directed SSSP (2510.19780v1)
Abstract: In this paper, we show new strongly polynomial work-depth tradeoffs for computing single-source shortest paths (SSSP) in non-negatively weighted directed graphs in parallel. Most importantly, we prove that directed SSSP can be solved within $\tilde{O}(m+n{2-\epsilon})$ work and $\tilde{O}(n{1-\epsilon})$ depth for some positive $\epsilon>0$. In particular, for dense graphs with non-negative real weights, we provide the first nearly work-efficient strongly polynomial algorithm with sublinear depth. Our result immediately yields improved strongly polynomial parallel algorithms for min-cost flow and the assignment problem. It also leads to the first non-trivial strongly polynomial dynamic algorithm for minimum mean cycle. Moreover, we develop efficient parallel algorithms in the Word RAM model for several variants of SSSP in graphs with exponentially large edge weights.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.