Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Adaptive Distribution-aware Quantization for Mixed-Precision Neural Networks (2510.19760v1)

Published 22 Oct 2025 in cs.CV

Abstract: Quantization-Aware Training (QAT) is a critical technique for deploying deep neural networks on resource-constrained devices. However, existing methods often face two major challenges: the highly non-uniform distribution of activations and the static, mismatched codebooks used in weight quantization. To address these challenges, we propose Adaptive Distribution-aware Quantization (ADQ), a mixed-precision quantization framework that employs a differentiated strategy. The core of ADQ is a novel adaptive weight quantization scheme comprising three key innovations: (1) a quantile-based initialization method that constructs a codebook closely aligned with the initial weight distribution; (2) an online codebook adaptation mechanism based on Exponential Moving Average (EMA) to dynamically track distributional shifts; and (3) a sensitivity-informed strategy for mixed-precision allocation. For activations, we integrate a hardware-friendly non-uniform-to-uniform mapping scheme. Comprehensive experiments validate the effectiveness of our method. On ImageNet, ADQ enables a ResNet-18 to achieve 71.512% Top-1 accuracy with an average bit-width of only 2.81 bits, outperforming state-of-the-art methods under comparable conditions. Furthermore, detailed ablation studies on CIFAR-10 systematically demonstrate the individual contributions of each innovative component, validating the rationale and effectiveness of our design.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.