Papers
Topics
Authors
Recent
2000 character limit reached

Latent Space Factorization in LoRA (2510.19640v1)

Published 22 Oct 2025 in cs.LG

Abstract: Low-rank adaptation (LoRA) is a widely used method for parameter-efficient finetuning. However, existing LoRA variants lack mechanisms to explicitly disambiguate task-relevant information within the learned low-rank subspace, potentially limiting downstream performance. We propose Factorized Variational Autoencoder LoRA (FVAE-LoRA), which leverages a VAE to learn two distinct latent spaces. Our novel Evidence Lower Bound formulation explicitly promotes factorization between the latent spaces, dedicating one latent space to task-salient features and the other to residual information. Extensive experiments on text, audio, and image tasks demonstrate that FVAE-LoRA consistently outperforms standard LoRA. Moreover, spurious correlation evaluations confirm that FVAE-LoRA better isolates task-relevant signals, leading to improved robustness under distribution shifts. Our code is publicly available at: https://github.com/idiap/FVAE-LoRA

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 13 tweets with 93 likes about this paper.

alphaXiv

  1. Latent Space Factorization in LoRA (3 likes, 0 questions)