Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ELUTQ: Efficient LUT-Aware Quantization for Deploying Large Language Models on Edge Devices (2510.19482v1)

Published 22 Oct 2025 in cs.LG

Abstract: The deployment of LLMs on CPU-based edge devices is crucial for enabling on-device intelligence and expanding AI accessibility. However, it remains challenging due to limited memory and computational resources. During edge inference, memory usage and latency are the primary bottlenecks. Although weight quantization can effectively reduce memory consumption, existing hardware-friendly approaches often rely on uniform quantization, which poorly fits weight distributions and incurs high dequantization overhead at low bit widths. To address these limitations, we propose ELUTQ, an efficient quantization framework introducing a novel quantization format, Hierarchical Linear Quantization (HLQ). HLQ better captures the statistical characteristics of weights without increasing the computational cost of Bit-serial LUT-based GEMM operations, thereby eliminating dequantization overhead. It is orthogonal to existing quantization algorithms and can be seamlessly integrated into various quantization pipelines. For efficient on-device deployment, ELUTQ provides optimized CPU kernels for end-to-end inference. Experiments show that for LLaMA3-8B, HLQ reduces perplexity by about 8% at 3-bit and 85% at 2-bit precision under post-training quantization, completing quantization within one hour. With efficient finetuning, HLQ further improves 2-bit performance within two hours. In terms of inference efficiency, our 2-bit LLaMA2-7B achieves over 25 tokens/s on an Apple M2 chip (4 threads, batch size = 1).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.