Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Foundations of Noncommutative Carrollian Geometry via Lie-Rinehart Pairs (2510.19458v1)

Published 22 Oct 2025 in math-ph, gr-qc, hep-th, math.DG, math.MP, and math.QA

Abstract: Carroll manifolds offer an intrinsic geometric framework for the physics in the ultra-relativistic limit. The recently introduced Carrollian Lie algebroids are generalised to the setting of $\rho$-commutative geometry, (also known as almost commutative geometry), where the underlying algebras commute up to a numerical factor. Via $\rho$-Lie-Rinehart pairs, it is shown that the foundational tenets of Carrollian geometry have analogous statements in the almost commutative world. We explicitly build two toy examples: we equip the extended quantum plane and the noncommutative $2$-torus with Carrollian structures. This opens up the rigorous study of noncommutative Carrollian geometry via almost commutative geometry.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: