Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Derandomization Framework for Structure Discovery: Applications in Neural Networks and Beyond (2510.19382v1)

Published 22 Oct 2025 in stat.ML and cs.LG

Abstract: Understanding the dynamics of feature learning in neural networks (NNs) remains a significant challenge. The work of (Mousavi-Hosseini et al., 2023) analyzes a multiple index teacher-student setting and shows that a two-layer student attains a low-rank structure in its first-layer weights when trained with stochastic gradient descent (SGD) and a strong regularizer. This structural property is known to reduce sample complexity of generalization. Indeed, in a second step, the same authors establish algorithm-specific learning guarantees under additional assumptions. In this paper, we focus exclusively on the structure discovery aspect and study it under weaker assumptions, more specifically: we allow (a) NNs of arbitrary size and depth, (b) with all parameters trainable, (c) under any smooth loss function, (d) tiny regularization, and (e) trained by any method that attains a second-order stationary point (SOSP), e.g.\ perturbed gradient descent (PGD). At the core of our approach is a key $\textit{derandomization}$ lemma, which states that optimizing the function $\mathbb{E}{\mathbf{x}} \left[g{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})\right]$ converges to a point where $\mathbf{W} = \mathbf{0}$, under mild conditions. The fundamental nature of this lemma directly explains structure discovery and has immediate applications in other domains including an end-to-end approximation for MAXCUT, and computing Johnson-Lindenstrauss embeddings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube