Papers
Topics
Authors
Recent
2000 character limit reached

Foundation Model Forecasts: Form and Function (2510.19345v1)

Published 22 Oct 2025 in cs.LG and cs.AI

Abstract: Time-series foundation models (TSFMs) achieve strong forecast accuracy, yet accuracy alone does not determine practical value. The form of a forecast -- point, quantile, parametric, or trajectory ensemble -- fundamentally constrains which operational tasks it can support. We survey recent TSFMs and find that two-thirds produce only point or parametric forecasts, while many operational tasks require trajectory ensembles that preserve temporal dependence. We establish when forecast types can be converted and when they cannot: trajectory ensembles convert to simpler forms via marginalization without additional assumptions, but the reverse requires imposing temporal dependence through copulas or conformal methods. We prove that marginals cannot determine path-dependent event probabilities -- infinitely many joint distributions share identical marginals but yield different answers to operational questions. We map six fundamental forecasting tasks to minimal sufficient forecast types and provide a task-aligned evaluation framework. Our analysis clarifies when forecast type, not accuracy, differentiates practical utility.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.