Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Nonmonotone subgradient methods based on a local descent lemma (2510.19341v1)

Published 22 Oct 2025 in math.OC and cs.LG

Abstract: The aim of this paper is to extend the context of nonmonotone descent methods to the class of nonsmooth and nonconvex functions called upper-$\mathcal{C}2$, which satisfy a nonsmooth and local version of the descent lemma. Under this assumption, we propose a general subgradient method that performs a nonmonotone linesearch, and we prove subsequential convergence to a stationary point of the optimization problem. Our approach allows us to cover the setting of various subgradient algorithms, including Newton and quasi-Newton methods. In addition, we propose a specification of the general scheme, named Self-adaptive Nonmonotone Subgradient Method (SNSM), which automatically updates the parameters of the linesearch. Particular attention is paid to the minimum sum-of-squares clustering problem, for which we provide a concrete implementation of SNSM. We conclude with some numerical experiments where we exhibit the advantages of SNSM in comparison with some known algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: