Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hybrid Quantum-Classical Eigensolver with Real-Space Sampling and Symmetric Subspace Measurements (2510.19219v1)

Published 22 Oct 2025 in quant-ph and cond-mat.str-el

Abstract: We propose a hybrid quantum-classical eigensolver to address the computational challenges of simulating strongly correlated quantum many-body systems, where the exponential growth of the Hilbert space and extensive entanglement render classical methods intractable. Our approach combines real-space sampling of tensor-network-bridged quantum circuits with symmetric subspace measurements, effectively constraining the wavefunction within a substaintially reduced Hilbert space for efficient and scalable simulations of versatile target states. The system is partitioned into equal-sized subsystems, where quantum circuits capture local entanglement and tensor networks reconnect them to recover global correlations, thereby overcoming partition-induced limitations. Symmetric subspace measurements exploit point-group symmetries through a many-to-one mapping that aggregates equivalent real-space configurations into a single symmetric state, effectively enhancing real-space bipartition entanglement while elimilating redundant degrees of freedom. The tensor network further extends this connectivity across circuits, restoring global entanglement and correlation, while simultaneously enabling generative sampling for efficient optimization. As a proof of concept, we apply the method to the periodic $J_1!-!J_2$ antiferromagnetic Heisenberg model in one and two dimensions, incorporating translation, reflection, and inversion symmetries. With a small matrix product state bond dimension of up to 6, the method achieves an absolute energy error of $10{-5}$ for a 64-site periodic chain and a $6\times6$ torus after bond-dimension extrapolation. These results validate the accuracy and efficiency of the hybrid eigensolver and demonstrate its strong potential for scalable quantum simulations of strongly correlated systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube