Papers
Topics
Authors
Recent
2000 character limit reached

Shrinkage to Infinity: Reducing Test Error by Inflating the Minimum Norm Interpolator in Linear Models (2510.19206v1)

Published 22 Oct 2025 in math.ST, stat.ML, and stat.TH

Abstract: Hastie et al. (2022) found that ridge regularization is essential in high dimensional linear regression $y=\betaTx + \epsilon$ with isotropic co-variates $x\in \mathbb{R}d$ and $n$ samples at fixed $d/n$. However, Hastie et al. (2022) also notes that when the co-variates are anisotropic and $\beta$ is aligned with the top eigenvalues of population covariance, the "situation is qualitatively different." In the present article, we make precise this observation for linear regression with highly anisotropic covariances and diverging $d/n$. We find that simply scaling up (or inflating) the minimum $\ell_2$ norm interpolator by a constant greater than one can improve the generalization error. This is in sharp contrast to traditional regularization/shrinkage prescriptions. Moreover, we use a data-splitting technique to produce consistent estimators that achieve generalization error comparable to that of the optimally inflated minimum-norm interpolator. Our proof relies on apparently novel matching upper and lower bounds for expectations of Gaussian random projections for a general class of anisotropic covariance matrices when $d/n\to \infty$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper: