Papers
Topics
Authors
Recent
2000 character limit reached

News-Aware Direct Reinforcement Trading for Financial Markets (2510.19173v1)

Published 22 Oct 2025 in q-fin.CP, cs.AI, and cs.LG

Abstract: The financial market is known to be highly sensitive to news. Therefore, effectively incorporating news data into quantitative trading remains an important challenge. Existing approaches typically rely on manually designed rules and/or handcrafted features. In this work, we directly use the news sentiment scores derived from LLMs, together with raw price and volume data, as observable inputs for reinforcement learning. These inputs are processed by sequence models such as recurrent neural networks or Transformers to make end-to-end trading decisions. We conduct experiments using the cryptocurrency market as an example and evaluate two representative reinforcement learning algorithms, namely Double Deep Q-Network (DDQN) and Group Relative Policy Optimization (GRPO). The results demonstrate that our news-aware approach, which does not depend on handcrafted features or manually designed rules, can achieve performance superior to market benchmarks. We further highlight the critical role of time-series information in this process.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com