Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ADPO: Anchored Direct Preference Optimization (2510.18913v1)

Published 21 Oct 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Anchored Direct Preference Optimization (ADPO) is a unified framework that generalizes Direct Preference Optimization (DPO) with soft preferences, reference-policy anchoring, and groupwise extensions. While standard DPO assumes hard binary labels and pairwise comparisons, ADPO introduces: (i) soft preference probabilities that encode uncertainty and mitigate gradient drift; (ii) arbitrary reference-policy anchors that stabilize training via groupwise shift invariance and implicit KL regularization; and (iii) listwise preference modeling through Plackett-Luce distributions. We prove that DPO, Bradley-Terry objectives, and Top-1-vs-Rest formulations emerge as special cases. ADPO yields three practical variants: pairwise anchored Soft-DPO, listwise anchored Soft-DPO with raw rewards, and KDE-based listwise smoothing for heavy-tailed noise. In contextual bandits, anchoring improves WinMass by 38-63% over standard DPO, while KDE smoothing achieves 0.68 vs 0.32 under heavy-tailed contamination (112% relative gain). In sequential reinforcement learning (CartPole, LunarLander), anchoring improves noisy-preference performance by 15-29%, confirming transfer from single-step to multi-step settings. Experiments with 10-256 parameter models provide clear guidance: use pairwise anchored Soft-DPO for clean or moderate noise, and KDE-based listwise ADPO for extreme contamination.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.