Papers
Topics
Authors
Recent
2000 character limit reached

HarmNet: A Framework for Adaptive Multi-Turn Jailbreak Attacks on Large Language Models

Published 21 Oct 2025 in cs.CR and cs.AI | (2510.18728v1)

Abstract: LLMs remain vulnerable to multi-turn jailbreak attacks. We introduce HarmNet, a modular framework comprising ThoughtNet, a hierarchical semantic network; a feedback-driven Simulator for iterative query refinement; and a Network Traverser for real-time adaptive attack execution. HarmNet systematically explores and refines the adversarial space to uncover stealthy, high-success attack paths. Experiments across closed-source and open-source LLMs show that HarmNet outperforms state-of-the-art methods, achieving higher attack success rates. For example, on Mistral-7B, HarmNet achieves a 99.4% attack success rate, 13.9% higher than the best baseline. Index terms: jailbreak attacks; LLMs; adversarial framework; query refinement.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.