Papers
Topics
Authors
Recent
2000 character limit reached

Investigating LLM Capabilities on Long Context Comprehension for Medical Question Answering

Published 21 Oct 2025 in cs.CL | (2510.18691v1)

Abstract: This study is the first to investigate LLM comprehension capabilities over long-context (LC) medical QA of clinical relevance. Our comprehensive assessment spans a range of content-inclusion settings based on their relevance, LLM models of varying capabilities and datasets across task formulations, revealing insights on model size effects, limitations, underlying memorization issues and the benefits of reasoning models. Importantly, we examine the effect of RAG on medical LC comprehension, uncover best settings in single versus multi-document reasoning datasets and showcase RAG strategies for improvements over LC. We shed light into some of the evaluation aspects using a multi-faceted approach. Our qualitative and error analyses address open questions on when RAG is beneficial over LC, revealing common failure cases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 137 likes about this paper.