Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Prototyping an End-to-End Multi-Modal Tiny-CNN for Cardiovascular Sensor Patches (2510.18668v1)

Published 21 Oct 2025 in cs.LG and cs.CV

Abstract: The vast majority of cardiovascular diseases may be preventable if early signs and risk factors are detected. Cardiovascular monitoring with body-worn sensor devices like sensor patches allows for the detection of such signs while preserving the freedom and comfort of patients. However, the analysis of the sensor data must be robust, reliable, efficient, and highly accurate. Deep learning methods can automate data interpretation, reducing the workload of clinicians. In this work, we analyze the feasibility of applying deep learning models to the classification of synchronized electrocardiogram (ECG) and phonocardiogram (PCG) recordings on resource-constrained medical edge devices. We propose a convolutional neural network with early fusion of data to solve a binary classification problem. We train and validate our model on the synchronized ECG and PCG recordings from the Physionet Challenge 2016 dataset. Our approach reduces memory footprint and compute cost by three orders of magnitude compared to the state-of-the-art while maintaining competitive accuracy. We demonstrate the applicability of our proposed model on medical edge devices by analyzing energy consumption on a microcontroller and an experimental sensor device setup, confirming that on-device inference can be more energy-efficient than continuous data streaming.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.