Query Decomposition for RAG: Balancing Exploration-Exploitation (2510.18633v1)
Abstract: Retrieval-augmented generation (RAG) systems address complex user requests by decomposing them into subqueries, retrieving potentially relevant documents for each, and then aggregating them to generate an answer. Efficiently selecting informative documents requires balancing a key trade-off: (i) retrieving broadly enough to capture all the relevant material, and (ii) limiting retrieval to avoid excessive noise and computational cost. We formulate query decomposition and document retrieval in an exploitation-exploration setting, where retrieving one document at a time builds a belief about the utility of a given sub-query and informs the decision to continue exploiting or exploring an alternative. We experiment with a variety of bandit learning methods and demonstrate their effectiveness in dynamically selecting the most informative sub-queries. Our main finding is that estimating document relevance using rank information and human judgments yields a 35% gain in document-level precision, 15% increase in {\alpha}-nDCG, and better performance on the downstream task of long-form generation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.