Papers
Topics
Authors
Recent
2000 character limit reached

RAISE: A Unified Framework for Responsible AI Scoring and Evaluation (2510.18559v1)

Published 21 Oct 2025 in cs.LG, cs.AI, cs.CE, and cs.CY

Abstract: As AI systems enter high-stakes domains, evaluation must extend beyond predictive accuracy to include explainability, fairness, robustness, and sustainability. We introduce RAISE (Responsible AI Scoring and Evaluation), a unified framework that quantifies model performance across these four dimensions and aggregates them into a single, holistic Responsibility Score. We evaluated three deep learning models: a Multilayer Perceptron (MLP), a Tabular ResNet, and a Feature Tokenizer Transformer, on structured datasets from finance, healthcare, and socioeconomics. Our findings reveal critical trade-offs: the MLP demonstrated strong sustainability and robustness, the Transformer excelled in explainability and fairness at a very high environmental cost, and the Tabular ResNet offered a balanced profile. These results underscore that no single model dominates across all responsibility criteria, highlighting the necessity of multi-dimensional evaluation for responsible model selection. Our implementation is available at: https://github.com/raise-framework/raise.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.