Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interval Prediction of Annual Average Daily Traffic on Local Roads via Quantile Random Forest with High-Dimensional Spatial Data (2510.18548v1)

Published 21 Oct 2025 in stat.ML, cs.LG, and stat.AP

Abstract: Accurate annual average daily traffic (AADT) data are vital for transport planning and infrastructure management. However, automatic traffic detectors across national road networks often provide incomplete coverage, leading to underrepresentation of minor roads. While recent machine learning advances have improved AADT estimation at unmeasured locations, most models produce only point predictions and overlook estimation uncertainty. This study addresses that gap by introducing an interval prediction approach that explicitly quantifies predictive uncertainty. We integrate a Quantile Random Forest model with Principal Component Analysis to generate AADT prediction intervals, providing plausible traffic ranges bounded by estimated minima and maxima. Using data from over 2,000 minor roads in England and Wales, and evaluated with specialized interval metrics, the proposed method achieves an interval coverage probability of 88.22%, a normalized average width of 0.23, and a Winkler Score of 7,468.47. By combining machine learning with spatial and high-dimensional analysis, this framework enhances both the accuracy and interpretability of AADT estimation, supporting more robust and informed transport planning.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: