Probabilistic Modeling of Intentions in Socially Intelligent LLM Agents (2510.18476v1)
Abstract: We present a probabilistic intent modeling framework for LLM agents in multi-turn social dialogue. The framework maintains a belief distribution over a partner's latent intentions, initialized from contextual priors and dynamically updated through likelihood estimation after each utterance. The evolving distribution provides additional contextual grounding for the policy, enabling adaptive dialogue strategies under uncertainty. Preliminary experiments in the SOTOPIA environment show consistent improvements: the proposed framework increases the Overall score by 9.0% on SOTOPIA-All and 4.1% on SOTOPIA-Hard compared with the Qwen2.5-7B baseline, and slightly surpasses an oracle agent that directly observes partner intentions. These early results suggest that probabilistic intent modeling can contribute to the development of socially intelligent LLM agents.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.