Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Heterogeneous Adversarial Play in Interactive Environments (2510.18407v1)

Published 21 Oct 2025 in cs.AI

Abstract: Self-play constitutes a fundamental paradigm for autonomous skill acquisition, whereby agents iteratively enhance their capabilities through self-directed environmental exploration. Conventional self-play frameworks exploit agent symmetry within zero-sum competitive settings, yet this approach proves inadequate for open-ended learning scenarios characterized by inherent asymmetry. Human pedagogical systems exemplify asymmetric instructional frameworks wherein educators systematically construct challenges calibrated to individual learners' developmental trajectories. The principal challenge resides in operationalizing these asymmetric, adaptive pedagogical mechanisms within artificial systems capable of autonomously synthesizing appropriate curricula without predetermined task hierarchies. Here we present Heterogeneous Adversarial Play (HAP), an adversarial Automatic Curriculum Learning framework that formalizes teacher-student interactions as a minimax optimization wherein task-generating instructor and problem-solving learner co-evolve through adversarial dynamics. In contrast to prevailing ACL methodologies that employ static curricula or unidirectional task selection mechanisms, HAP establishes a bidirectional feedback system wherein instructors continuously recalibrate task complexity in response to real-time learner performance metrics. Experimental validation across multi-task learning domains demonstrates that our framework achieves performance parity with SOTA baselines while generating curricula that enhance learning efficacy in both artificial agents and human subjects.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.