Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MPC-based motion planning for non-holonomic systems in non-convex domains (2510.18402v1)

Published 21 Oct 2025 in cs.RO, cs.SY, and eess.SY

Abstract: Motivated by the application of using model predictive control (MPC) for motion planning of autonomous mobile robots, a form of output tracking MPC for non- holonomic systems and with non-convex constraints is studied. Although the advantages of using MPC for motion planning have been demonstrated in several papers, in most of the available fundamental literature on output tracking MPC it is assumed, often implicitly, that the model is holonomic and generally the state or output constraints must be convex. Thus, in application-oriented publications, empirical results dominate and the topic of proving completeness, in particular under which assumptions the target is always reached, has received comparatively little attention. To address this gap, we present a novel MPC formulation that guarantees convergence to the desired target under realistic assumptions, which can be verified in relevant real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube