Papers
Topics
Authors
Recent
2000 character limit reached

S2AP: Score-space Sharpness Minimization for Adversarial Pruning (2510.18381v1)

Published 21 Oct 2025 in cs.CV, cs.AI, and cs.LG

Abstract: Adversarial pruning methods have emerged as a powerful tool for compressing neural networks while preserving robustness against adversarial attacks. These methods typically follow a three-step pipeline: (i) pretrain a robust model, (ii) select a binary mask for weight pruning, and (iii) finetune the pruned model. To select the binary mask, these methods minimize a robust loss by assigning an importance score to each weight, and then keep the weights with the highest scores. However, this score-space optimization can lead to sharp local minima in the robust loss landscape and, in turn, to an unstable mask selection, reducing the robustness of adversarial pruning methods. To overcome this issue, we propose a novel plug-in method for adversarial pruning, termed Score-space Sharpness-aware Adversarial Pruning (S2AP). Through our method, we introduce the concept of score-space sharpness minimization, which operates during the mask search by perturbing importance scores and minimizing the corresponding robust loss. Extensive experiments across various datasets, models, and sparsity levels demonstrate that S2AP effectively minimizes sharpness in score space, stabilizing the mask selection, and ultimately improving the robustness of adversarial pruning methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.