Papers
Topics
Authors
Recent
2000 character limit reached

Cross-Modal Scene Semantic Alignment for Image Complexity Assessment (2510.18377v1)

Published 21 Oct 2025 in cs.CV

Abstract: Image complexity assessment (ICA) is a challenging task in perceptual evaluation due to the subjective nature of human perception and the inherent semantic diversity in real-world images. Existing ICA methods predominantly rely on hand-crafted or shallow convolutional neural network-based features of a single visual modality, which are insufficient to fully capture the perceived representations closely related to image complexity. Recently, cross-modal scene semantic information has been shown to play a crucial role in various computer vision tasks, particularly those involving perceptual understanding. However, the exploration of cross-modal scene semantic information in the context of ICA remains unaddressed. Therefore, in this paper, we propose a novel ICA method called Cross-Modal Scene Semantic Alignment (CM-SSA), which leverages scene semantic alignment from a cross-modal perspective to enhance ICA performance, enabling complexity predictions to be more consistent with subjective human perception. Specifically, the proposed CM-SSA consists of a complexity regression branch and a scene semantic alignment branch. The complexity regression branch estimates image complexity levels under the guidance of the scene semantic alignment branch, while the scene semantic alignment branch is used to align images with corresponding text prompts that convey rich scene semantic information by pair-wise learning. Extensive experiments on several ICA datasets demonstrate that the proposed CM-SSA significantly outperforms state-of-the-art approaches. Codes are available at https://github.com/XQ2K/First-Cross-Model-ICA.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.