Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Coverage-Recon: Coordinated Multi-Drone Image Sampling with Online Map Feedback (2510.18347v1)

Published 21 Oct 2025 in cs.RO, cs.SY, eess.SY, and math.OC

Abstract: This article addresses collaborative 3D map reconstruction using multiple drones. Achieving high-quality reconstruction requires capturing images of keypoints within the target scene from diverse viewing angles, and coverage control offers an effective framework to meet this requirement. Meanwhile, recent advances in real-time 3D reconstruction algorithms make it possible to render an evolving map during flight, enabling immediate feedback to guide drone motion. Building on this, we present Coverage-Recon, a novel coordinated image sampling algorithm that integrates online map feedback to improve reconstruction quality on-the-fly. In Coverage-Recon, the coordinated motion of drones is governed by a Quadratic Programming (QP)-based angle-aware coverage controller, which ensures multi-viewpoint image capture while enforcing safety constraints. The captured images are processed in real time by the NeuralRecon algorithm to generate an evolving 3D mesh. Mesh changes across the scene are interpreted as indicators of reconstruction uncertainty and serve as feedback to update the importance index of the coverage control as the map evolves. The effectiveness of Coverage-Recon is validated through simulation and experiments, demonstrating both qualitatively and quantitatively that incorporating online map feedback yields more complete and accurate 3D reconstructions than conventional methods. Project page: https://htnk-lab.github.io/coverage-recon/

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: