Papers
Topics
Authors
Recent
2000 character limit reached

GPTFace: Generative Pre-training of Facial-Linguistic Transformer by Span Masking and Weakly Correlated Text-image Data (2510.18345v1)

Published 21 Oct 2025 in cs.CV

Abstract: Compared to the prosperity of pre-training models in natural image understanding, the research on large-scale pre-training models for facial knowledge learning is still limited. Current approaches mainly rely on manually assembled and annotated face datasets for training, but labeling such datasets is labor-intensive and the trained models have limited scalability beyond the training data. To address these limitations, we present a generative pre-training model for facial knowledge learning that leverages large-scale web-built data for training. We use texts and images containing human faces crawled from the internet and conduct pre-training on self-supervised tasks, including masked image/language modeling (MILM) and image-text matching (ITM). During the generation stage, we further utilize the image-text matching loss to pull the generation distribution towards the control signal for controllable image/text generation. Experimental results demonstrate that our model achieves comparable performance to state-of-the-art pre-training models for various facial downstream tasks, such as attribution classification and expression recognition. Furthermore, our approach is also applicable to a wide range of face editing tasks, including face attribute editing, expression manipulation, mask removal, and photo inpainting.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.