Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Latent-Info and Low-Dimensional Learning for Human Mesh Recovery and Parallel Optimization (2510.18267v1)

Published 21 Oct 2025 in cs.CV and cs.AI

Abstract: Existing 3D human mesh recovery methods often fail to fully exploit the latent information (e.g., human motion, shape alignment), leading to issues with limb misalignment and insufficient local details in the reconstructed human mesh (especially in complex scenes). Furthermore, the performance improvement gained by modelling mesh vertices and pose node interactions using attention mechanisms comes at a high computational cost. To address these issues, we propose a two-stage network for human mesh recovery based on latent information and low dimensional learning. Specifically, the first stage of the network fully excavates global (e.g., the overall shape alignment) and local (e.g., textures, detail) information from the low and high-frequency components of image features and aggregates this information into a hybrid latent frequency domain feature. This strategy effectively extracts latent information. Subsequently, utilizing extracted hybrid latent frequency domain features collaborates to enhance 2D poses to 3D learning. In the second stage, with the assistance of hybrid latent features, we model the interaction learning between the rough 3D human mesh template and the 3D pose, optimizing the pose and shape of the human mesh. Unlike existing mesh pose interaction methods, we design a low-dimensional mesh pose interaction method through dimensionality reduction and parallel optimization that significantly reduces computational costs without sacrificing reconstruction accuracy. Extensive experimental results on large publicly available datasets indicate superiority compared to the most state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.