Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning under Quantization for High-Dimensional Linear Regression (2510.18259v1)

Published 21 Oct 2025 in stat.ML, cs.AI, and cs.LG

Abstract: The use of low-bit quantization has emerged as an indispensable technique for enabling the efficient training of large-scale models. Despite its widespread empirical success, a rigorous theoretical understanding of its impact on learning performance remains notably absent, even in the simplest linear regression setting. We present the first systematic theoretical study of this fundamental question, analyzing finite-step stochastic gradient descent (SGD) for high-dimensional linear regression under a comprehensive range of quantization targets: data, labels, parameters, activations, and gradients. Our novel analytical framework establishes precise algorithm-dependent and data-dependent excess risk bounds that characterize how different quantization affects learning: parameter, activation, and gradient quantization amplify noise during training; data quantization distorts the data spectrum; and data and label quantization introduce additional approximation and quantized error. Crucially, we prove that for multiplicative quantization (with input-dependent quantization step), this spectral distortion can be eliminated, and for additive quantization (with constant quantization step), a beneficial scaling effect with batch size emerges. Furthermore, for common polynomial-decay data spectra, we quantitatively compare the risks of multiplicative and additive quantization, drawing a parallel to the comparison between FP and integer quantization methods. Our theory provides a powerful lens to characterize how quantization shapes the learning dynamics of optimization algorithms, paving the way to further explore learning theory under practical hardware constraints.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 24 likes.

Upgrade to Pro to view all of the tweets about this paper: