Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Finding the Sweet Spot: Optimal Data Augmentation Ratio for Imbalanced Credit Scoring Using ADASYN (2510.18252v1)

Published 21 Oct 2025 in stat.AP, cs.AI, and cs.LG

Abstract: Credit scoring models face a critical challenge: severe class imbalance, with default rates typically below 10%, which hampers model learning and predictive performance. While synthetic data augmentation techniques such as SMOTE and ADASYN have been proposed to address this issue, the optimal augmentation ratio remains unclear, with practitioners often defaulting to full balancing (1:1 ratio) without empirical justification. This study systematically evaluates 10 data augmentation scenarios using the Give Me Some Credit dataset (97,243 observations, 7% default rate), comparing SMOTE, BorderlineSMOTE, and ADASYN at different multiplication factors (1x, 2x, 3x). All models were trained using XGBoost and evaluated on a held-out test set of 29,173 real observations. Statistical significance was assessed using bootstrap testing with 1,000 iterations. Key findings reveal that ADASYN with 1x multiplication (doubling the minority class) achieved optimal performance with AUC of 0.6778 and Gini coefficient of 0.3557, representing statistically significant improvements of +0.77% and +3.00% respectively (p = 0.017, bootstrap test). Higher multiplication factors (2x and 3x) resulted in performance degradation, with 3x showing a -0.48% decrease in AUC, suggesting a "law of diminishing returns" for synthetic oversampling. The optimal class imbalance ratio was found to be 6.6:1 (majority:minority), contradicting the common practice of balancing to 1:1. This work provides the first empirical evidence of an optimal "sweet spot" for data augmentation in credit scoring, with practical guidelines for industry practitioners and researchers working with imbalanced datasets. While demonstrated on a single representative dataset, the methodology provides a reproducible framework for determining optimal augmentation ratios in other imbalanced domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.