Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Local Coherence or Global Validity? Investigating RLVR Traces in Math Domains (2510.18176v1)

Published 20 Oct 2025 in cs.AI and cs.LG

Abstract: Reinforcement Learning with Verifiable Rewards (RLVR)-based post-training of LLMs has been shown to improve accuracy on reasoning tasks and continues to attract significant attention. Existing RLVR methods, however, typically treat all tokens uniformly without accounting for token-level advantages. These methods primarily evaluate performance based on final answer correctness or Pass@K accuracy, and yet make claims about RL post-training leading to improved reasoning traces. This motivates our investigation into the effect of RL post-training on intermediate tokens which are not directly incentivized. To study this, we design an experimental setup using the GRPO algorithm with Qwen-2.5-0.5B model on the GSM8K dataset. We introduce trace coherence, a First-Order Logic (FOL)-based measure to capture the consistency of reasoning steps by identifying errors in the traces. We distinguish between trace validity and trace coherence, noting that the former implies logical soundness while the latter measures local coherence via lack of errors. Our results show that RL post-training overall improves trace coherence with the most significant gains on problems where the base model fails but the RL model succeeds. Surprisingly, RL enhances local coherence without necessarily producing valid or correct solutions. This highlights a crucial distinction: improved local coherence in reasoning steps does not guarantee final answer correctness. We argue that claims of improved reasoning via RL must be examined with care, as these may be based on improved trace coherence, which may not translate into fully valid mathematical proofs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: