Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SimBA: Simplifying Benchmark Analysis Using Performance Matrices Alone (2510.17998v1)

Published 20 Oct 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Modern LLMs are evaluated on large benchmarks, which are difficult to make sense of, especially for model selection. Looking at the raw evaluation numbers themselves using a model-centric lens, we propose SimBA, a three phase framework to Simplify Benchmark Analysis. The three phases of SimBA are: stalk, where we conduct dataset & model comparisons, prowl, where we discover a representative subset, and pounce, where we use the representative subset to predict performance on a held-out set of models. Applying SimBA to three popular LM benchmarks: HELM, MMLU, and BigBenchLite reveals that across all three benchmarks, datasets and models relate strongly to one another (stalk). We develop an representative set discovery algorithm which covers a benchmark using raw evaluation scores alone. Using our algorithm, we find that with 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74) of the datasets for HELM, MMLU, and BigBenchLite respectively, we achieve coverage levels of at least 95% (prowl). Additionally, using just these representative subsets, we can both preserve model ranks and predict performance on a held-out set of models with near zero mean-squared error (pounce). Taken together, SimBA can help model developers improve efficiency during model training and dataset creators validate whether their newly created dataset differs from existing datasets in a benchmark. Our code is open source, available at https://github.com/nishantsubramani/simba.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 8 tweets and received 22 likes.

Upgrade to Pro to view all of the tweets about this paper: