Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data Unlearning Beyond Uniform Forgetting via Diffusion Time and Frequency Selection (2510.17917v1)

Published 20 Oct 2025 in cs.LG, cs.AI, and cs.CR

Abstract: Data unlearning aims to remove the influence of specific training samples from a trained model without requiring full retraining. Unlike concept unlearning, data unlearning in diffusion models remains underexplored and often suffers from quality degradation or incomplete forgetting. To address this, we first observe that most existing methods attempt to unlearn the samples at all diffusion time steps equally, leading to poor-quality generation. We argue that forgetting occurs disproportionately across time and frequency, depending on the model and scenarios. By selectively focusing on specific time-frequency ranges during training, we achieve samples with higher aesthetic quality and lower noise. We validate this improvement by applying our time-frequency selective approach to diverse settings, including gradient-based and preference optimization objectives, as well as both image-level and text-to-image tasks. Finally, to evaluate both deletion and quality of unlearned data samples, we propose a simple normalized version of SSCD. Together, our analysis and methods establish a clearer understanding of the unique challenges in data unlearning for diffusion models, providing practical strategies to improve both evaluation and unlearning performance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: