Papers
Topics
Authors
Recent
2000 character limit reached

Self-Evidencing Through Hierarchical Gradient Decomposition: A Dissipative System That Maintains Non-Equilibrium Steady-State by Minimizing Variational Free Energy (2510.17916v1)

Published 20 Oct 2025 in cs.NE, cs.AI, cs.LG, and q-bio.NC

Abstract: The Free Energy Principle (FEP) states that self-organizing systems must minimize variational free energy to persist, but the path from principle to implementable algorithm has remained unclear. We present a constructive proof that the FEP can be realized through exact local credit assignment. The system decomposes gradient computation hierarchically: spatial credit via feedback alignment, temporal credit via eligibility traces, and structural credit via a Trophic Field Map (TFM) that estimates expected gradient magnitude for each connection block. We prove these mechanisms are exact at their respective levels and validate the central claim empirically: the TFM achieves 0.9693 Pearson correlation with oracle gradients. This exactness produces emergent capabilities including 98.6% retention after task interference, autonomous recovery from 75% structural damage, self-organized criticality (spectral radius p ~= 1.0$), and sample-efficient reinforcement learning on continuous control tasks without replay buffers. The architecture unifies Prigogine's dissipative structures, Friston's free energy minimization, and Hopfield's attractor dynamics, demonstrating that exact hierarchical inference over network topology can be implemented with local, biologically plausible rules.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.