Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Uncertainty-Aware Post-Hoc Calibration: Mitigating Confidently Incorrect Predictions Beyond Calibration Metrics (2510.17915v1)

Published 19 Oct 2025 in cs.LG, cs.AI, and cs.NE

Abstract: Despite extensive research on neural network calibration, existing methods typically apply global transformations that treat all predictions uniformly, overlooking the heterogeneous reliability of individual predictions. Furthermore, the relationship between improved calibration and effective uncertainty-aware decision-making remains largely unexplored. This paper presents a post-hoc calibration framework that leverages prediction reliability assessment to jointly enhance calibration quality and uncertainty-aware decision-making. The framework employs proximity-based conformal prediction to stratify calibration samples into putatively correct and putatively incorrect groups based on semantic similarity in feature space. A dual calibration strategy is then applied: standard isotonic regression calibrated confidence in putatively correct predictions, while underconfidence-regularized isotonic regression reduces confidence toward uniform distributions for putatively incorrect predictions, facilitating their identification for further investigations. A comprehensive evaluation is conducted using calibration metrics, uncertainty-aware performance measures, and empirical conformal coverage. Experiments on CIFAR-10 and CIFAR-100 with BiT and CoAtNet backbones show that the proposed method achieves lower confidently incorrect predictions, and competitive Expected Calibration Error compared with isotonic and focal-loss baselines. This work bridges calibration and uncertainty quantification through instance-level adaptivity, offering a practical post-hoc solution that requires no model retraining while improving both probability alignment and uncertainty-aware decision-making.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.