Papers
Topics
Authors
Recent
2000 character limit reached

Shock-Aware Physics-Guided Fusion-DeepONet Operator for Rarefied Micro-Nozzle Flows

Published 18 Oct 2025 in cs.LG and physics.flu-dyn | (2510.17887v1)

Abstract: We present a comprehensive, physics aware deep learning framework for constructing fast and accurate surrogate models of rarefied, shock containing micro nozzle flows. The framework integrates three key components, a Fusion DeepONet operator learning architecture for capturing parameter dependencies, a physics-guided feature space that embeds a shock-aligned coordinate system, and a two-phase curriculum strategy emphasizing high-gradient regions. To demonstrate the generality and inductive bias of the proposed framework, we first validate it on the canonical viscous Burgers equation, which exhibits advective steepening and shock like gradients.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.