Papers
Topics
Authors
Recent
2000 character limit reached

Auditing and Mitigating Bias in Gender Classification Algorithms: A Data-Centric Approach (2510.17873v1)

Published 17 Oct 2025 in cs.CV and cs.AI

Abstract: Gender classification systems often inherit and amplify demographic imbalances in their training data. We first audit five widely used gender classification datasets, revealing that all suffer from significant intersectional underrepresentation. To measure the downstream impact of these flaws, we train identical MobileNetV2 classifiers on the two most balanced of these datasets, UTKFace and FairFace. Our fairness evaluation shows that even these models exhibit significant bias, misclassifying female faces at a higher rate than male faces and amplifying existing racial skew. To counter these data-induced biases, we construct BalancedFace, a new public dataset created by blending images from FairFace and UTKFace, supplemented with images from other collections to fill missing demographic gaps. It is engineered to equalize subgroup shares across 189 intersections of age, race, and gender using only real, unedited images. When a standard classifier is trained on BalancedFace, it reduces the maximum True Positive Rate gap across racial subgroups by over 50% and brings the average Disparate Impact score 63% closer to the ideal of 1.0 compared to the next-best dataset, all with a minimal loss of overall accuracy. These results underline the profound value of data-centric interventions and provide an openly available resource for fair gender classification research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: