Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Homological Proof of $\mathbf{P} \neq \mathbf{NP}$: Computational Topology via Categorical Framework (2510.17829v1)

Published 2 Oct 2025 in cs.CC, math.AC, math.CT, and math.RA

Abstract: This paper establishes the separation of complexity classes $\mathbf{P}$ and $\mathbf{NP}$ through a novel homological algebraic approach grounded in category theory. We construct the computational category $\mathbf{Comp}$, embedding computational problems and reductions into a unified categorical framework. By developing computational homology theory, we associate to each problem $L$ a chain complex $C_{\bullet}(L)$ whose homology groups $H_n(L)$ capture topological invariants of computational processes. Our main result demonstrates that problems in $\mathbf{P}$ exhibit trivial computational homology ($H_n(L) = 0$ for all $n > 0$), while $\mathbf{NP}$-complete problems such as SAT possess non-trivial homology ($H_1(\mathrm{SAT}) \neq 0$). This homological distinction provides the first rigorous proof of $\mathbf{P} \neq \mathbf{NP}$ using topological methods. The proof is formally verified in Lean 4, ensuring absolute mathematical rigor. Our work inaugurates computational topology as a new paradigm for complexity analysis, offering finer distinctions than traditional combinatorial approaches and establishing connections between structural complexity theory and homological invariants.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 40 likes.

Upgrade to Pro to view all of the tweets about this paper:

Reddit Logo Streamline Icon: https://streamlinehq.com