Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Admittance Matrix Concentration Inequalities for Understanding Uncertain Power Networks (2510.17798v1)

Published 20 Oct 2025 in eess.SY, cs.SY, and stat.AP

Abstract: This paper presents probabilistic bounds for the spectrum of the admittance matrix and classical linear power flow models under uncertain network parameters; for example, probabilistic line contingencies. Our proposed approach imports tools from probability theory, such as concentration inequalities for random matrices with independent entries. It yields error bounds for common approximations of the AC power flow equations under parameter uncertainty, including the DC and LinDistFlow approximations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.