Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sample Complexity Analysis of Multi-Target Detection via Markovian and Hard-Core Multi-Reference Alignment (2510.17775v1)

Published 20 Oct 2025 in eess.SP, cs.IT, and math.IT

Abstract: Motivated by single-particle cryo-electron microscopy, we study the sample complexity of the multi-target detection (MTD) problem, in which an unknown signal appears multiple times at unknown locations within a long, noisy observation. We propose a patching scheme that reduces MTD to a non-i.i.d. multi-reference alignment (MRA) model. In the one-dimensional setting, the latent group elements form a Markov chain, and we show that the convergence rate of any estimator matches that of the corresponding i.i.d. MRA model, up to a logarithmic factor in the number of patches. Moreover, for estimators based on empirical averaging, such as the method of moments, the convergence rates are identical in both settings. We further establish an analogous result in two dimensions, where the latent structure arises from an exponentially mixing random field generated by a hard-core placement model. As a consequence, if the signal in the corresponding i.i.d. MRA model is determined by moments up to order $n_{\min}$, then in the low-SNR regime the number of patches required to estimate the signal in the MTD model scales as $\sigma{2n_{\min}}$, where $\sigma2$ denotes the noise variance.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube