Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-asymptotic error bounds for probability flow ODEs under weak log-concavity (2510.17608v1)

Published 20 Oct 2025 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Score-based generative modeling, implemented through probability flow ODEs, has shown impressive results in numerous practical settings. However, most convergence guarantees rely on restrictive regularity assumptions on the target distribution -- such as strong log-concavity or bounded support. This work establishes non-asymptotic convergence bounds in the 2-Wasserstein distance for a general class of probability flow ODEs under considerably weaker assumptions: weak log-concavity and Lipschitz continuity of the score function. Our framework accommodates non-log-concave distributions, such as Gaussian mixtures, and explicitly accounts for initialization errors, score approximation errors, and effects of discretization via an exponential integrator scheme. Bridging a key theoretical challenge in diffusion-based generative modeling, our results extend convergence theory to more realistic data distributions and practical ODE solvers. We provide concrete guarantees for the efficiency and correctness of the sampling algorithm, complementing the empirical success of diffusion models with rigorous theory. Moreover, from a practical perspective, our explicit rates might be helpful in choosing hyperparameters, such as the step size in the discretization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.