When Annotators Disagree, Topology Explains: Mapper, a Topological Tool for Exploring Text Embedding Geometry and Ambiguity
Abstract: LLMs are often evaluated with scalar metrics like accuracy, but such measures fail to capture how models internally represent ambiguity, especially when human annotators disagree. We propose a topological perspective to analyze how fine-tuned models encode ambiguity and more generally instances. Applied to RoBERTa-Large on the MD-Offense dataset, Mapper, a tool from topological data analysis, reveals that fine-tuning restructures embedding space into modular, non-convex regions aligned with model predictions, even for highly ambiguous cases. Over $98\%$ of connected components exhibit $\geq 90\%$ prediction purity, yet alignment with ground-truth labels drops in ambiguous data, surfacing a hidden tension between structural confidence and label uncertainty. Unlike traditional tools such as PCA or UMAP, Mapper captures this geometry directly uncovering decision regions, boundary collapses, and overconfident clusters. Our findings position Mapper as a powerful diagnostic tool for understanding how models resolve ambiguity. Beyond visualization, it also enables topological metrics that may inform proactive modeling strategies in subjective NLP tasks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.