Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Mixed-Form PINNS (MF-PINNS) For Solving The Coupled Stokes-Darcy Equations (2510.17508v1)

Published 20 Oct 2025 in physics.flu-dyn and q-fin.MF

Abstract: Parallel physical information neural networks (P-PINNs) have been widely used to solve systems with multiple coupled physical fields, such as the coupled Stokes-Darcy equations with Beavers-Joseph-Saffman (BJS) interface conditions. However, excessively high or low physical constants in partial differential equations (PDE) often lead to ill conditioned loss functions and can even cause the failure of training numerical solutions for PINNs. To solve this problem, we develop a new kind of enhanced parallel PINNs, MF-PINNs, in this article. Our MF-PINNs combines the velocity pressure form (VP) with the stream-vorticity form (SV) and add them with adjusted weights to the total loss functions. The results of numerical experiments show our MF-PINNs have successfully improved the accuracy of the streamline fields and the pressure fields when kinematic viscosity and permeability tensor range from 1e-4 to 1e4. Thus, our MF-PINNs hold promise for more chaotic PDE systems involving turbulent flows. Additionally, we also explore the best combination of the activation functions and their periodicity. And we also try to set the initial learning rate and design its decay strategies. The code and data associated with this paper are available at https://github.com/shxshx48716/MF-PINNs.git.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com