Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Local properties of neural networks through the lens of layer-wise Hessians (2510.17486v1)

Published 20 Oct 2025 in cs.LG

Abstract: We introduce a methodology for analyzing neural networks through the lens of layer-wise Hessian matrices. The local Hessian of each functional block (layer) is defined as the matrix of second derivatives of a scalar function with respect to the parameters of that layer. This concept provides a formal tool for characterizing the local geometry of the parameter space. We show that the spectral properties of local Hessians, such as the distribution of eigenvalues, reveal quantitative patterns associated with overfitting, underparameterization, and expressivity in neural network architectures. We conduct an extensive empirical study involving 111 experiments across 37 datasets. The results demonstrate consistent structural regularities in the evolution of local Hessians during training and highlight correlations between their spectra and generalization performance. These findings establish a foundation for using local geometric analysis to guide the diagnosis and design of deep neural networks. The proposed framework connects optimization geometry with functional behavior and offers practical insight for improving network architectures and training stability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.