Not All Deepfakes Are Created Equal: Triaging Audio Forgeries for Robust Deepfake Singer Identification (2510.17474v1)
Abstract: The proliferation of highly realistic singing voice deepfakes presents a significant challenge to protecting artist likeness and content authenticity. Automatic singer identification in vocal deepfakes is a promising avenue for artists and rights holders to defend against unauthorized use of their voice, but remains an open research problem. Based on the premise that the most harmful deepfakes are those of the highest quality, we introduce a two-stage pipeline to identify a singer's vocal likeness. It first employs a discriminator model to filter out low-quality forgeries that fail to accurately reproduce vocal likeness. A subsequent model, trained exclusively on authentic recordings, identifies the singer in the remaining high-quality deepfakes and authentic audio. Experiments show that this system consistently outperforms existing baselines on both authentic and synthetic content.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.