Papers
Topics
Authors
Recent
2000 character limit reached

The Parameterized Complexity of Computing the VC-Dimension (2510.17451v1)

Published 20 Oct 2025 in cs.CC, cs.AI, cs.DM, cs.LG, and math.CO

Abstract: The VC-dimension is a fundamental and well-studied measure of the complexity of a set system (or hypergraph) that is central to many areas of machine learning. We establish several new results on the complexity of computing the VC-dimension. In particular, given a hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{E})$, we prove that the naive $2{\mathcal{O}(|\mathcal{V}|)}$-time algorithm is asymptotically tight under the Exponential Time Hypothesis (ETH). We then prove that the problem admits a 1-additive fixed-parameter approximation algorithm when parameterized by the maximum degree of $\mathcal{H}$ and a fixed-parameter algorithm when parameterized by its dimension, and that these are essentially the only such exploitable structural parameters. Lastly, we consider a generalization of the problem, formulated using graphs, which captures the VC-dimension of both set systems and graphs. We show that it is fixed-parameter tractable parameterized by the treewidth of the graph (which, in the case of set systems, applies to the treewidth of its incidence graph). In contrast with closely related problems whose dependency on the treewidth is necessarily double-exponential (assuming the ETH), our algorithm has a relatively low dependency on the treewidth.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.