Papers
Topics
Authors
Recent
Search
2000 character limit reached

Diverse Planning with Simulators via Linear Temporal Logic

Published 20 Oct 2025 in cs.AI and cs.MA | (2510.17418v1)

Abstract: Autonomous agents rely on automated planning algorithms to achieve their objectives. Simulation-based planning offers a significant advantage over declarative models in modelling complex environments. However, relying solely on a planner that produces a single plan may not be practical, as the generated plans may not always satisfy the agent's preferences. To address this limitation, we introduce $\texttt{FBI}\texttt{LTL}$, a diverse planner explicitly designed for simulation-based planning problems. $\texttt{FBI}\texttt{LTL}$ utilises Linear Temporal Logic (LTL) to define semantic diversity criteria, enabling agents to specify what constitutes meaningfully different plans. By integrating these LTL-based diversity models directly into the search process, $\texttt{FBI}\texttt{LTL}$ ensures the generation of semantically diverse plans, addressing a critical limitation of existing diverse planning approaches that may produce syntactically different but semantically identical solutions. Extensive evaluations on various benchmarks consistently demonstrate that $\texttt{FBI}\texttt{LTL}$ generates more diverse plans compared to a baseline approach. This work establishes the feasibility of semantically-guided diverse planning in simulation-based environments, paving the way for innovative approaches in realistic, non-symbolic domains where traditional model-based approaches fail.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.