Papers
Topics
Authors
Recent
2000 character limit reached

S4ECG: Exploring the impact of long-range interactions for arrhythmia prediction (2510.17406v1)

Published 20 Oct 2025 in cs.LG and eess.SP

Abstract: The electrocardiogram (ECG) exemplifies biosignal-based time series with continuous, temporally ordered structure reflecting cardiac physiological and pathophysiological dynamics. Detailed analysis of these dynamics has proven challenging, as conventional methods capture either global trends or local waveform features but rarely their simultaneous interplay at high temporal resolution. To bridge global and local signal analysis, we introduce S4ECG, a novel deep learning architecture leveraging structured state space models for multi-epoch arrhythmia classification. Our joint multi-epoch predictions significantly outperform single-epoch approaches by 1.0-11.6% in macro-AUROC, with atrial fibrillation specificity improving from 0.718-0.979 to 0.967-0.998, demonstrating superior performance in-distribution and enhanced out-of-distribution robustness. Systematic investigation reveals optimal temporal dependency windows spanning 10-20 minutes for peak performance. This work contributes to a paradigm shift toward temporally-aware arrhythmia detection algorithms, opening new possibilities for ECG interpretation, in particular for complex arrhythmias like atrial fibrillation and atrial flutter.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.