Auto-Rubric: Learning to Extract Generalizable Criteria for Reward Modeling (2510.17314v1)
Abstract: Reward models are essential for aligning LLMs with human values, yet their development is hampered by costly preference datasets and poor interpretability. While recent rubric-based approaches offer transparency, they often lack systematic quality control and optimization, creating a trade-off between scalability and reliability. We address these limitations with a novel, training-free framework built on a key assumption: \textit{evaluation rubrics underlying human preferences exhibit significant generalization ability across diverse queries}, a property that enables remarkable data efficiency. Our two-stage approach first infers high-quality, query-specific rubrics using a validation-guided \textbf{Propose-Evaluate-Revise} pipeline. Second, it generalizes these granular rubrics into a compact, non-redundant core set by maximizing an \textbf{information-theoretic coding rate}. The final output is an interpretable, hierarchical "Theme-Tips" rubric set. Extensive experiments demonstrate the framework's exceptional data efficiency and performance. Critically, using just 70 preference pairs (1.5\% of the source data), our method also empowers smaller models like Qwen3-8B to outperform specialized, fully-trained counterparts. This work pioneers a scalable, interpretable, and data-efficient path for reward modeling.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.